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Abstract. The thermodynamic properties of the trapped ideal spinor Bose gas are studied in details with
the constraints of fixed total number of atoms N , and magnetization M . The double transition tempera-
tures, their corresponding corrections due to finite particle number, and the population of each component
are investigated. The generalization to the ideal spinor Bose gas of hyperfine quantum number F is also
discussed. We propose that the order and disorder parameters to describe the symmetry broken of con-
densation.

PACS. 03.75.Mn Multicomponent condensates; spinor condensates – 03.75.Hh Static properties of con-
densates; thermodynamical, statistical, and structural properties – 05.30.Jp Boson systems (for static and
dynamic properties of Bose-Einstein condensates)

1 Introduction

Since the experimental realization of Bose-Einstein con-
densation (BEC) in 1995 [1], there are two kinds of atomic
trapping. Namely, the magnetic optical trap (MOT), and
the all-optical trap (AOT) [2]. In the AOT, the atoms are
confined by the dipole potential of the light. For atoms
with hyperfine quantum number F , all the 2F + 1 com-
ponents might be trapped. The condensate is called the
spinor BEC. Due to the coexistence of multi-component
condensates, the spinor system has interesting property
that MOT BEC does not have. For example, due to the
difference in atomic scattering lengths, the F = 1 spinor
BEC of 87Rb atom is a ferromagnetic state and 23Na
is a polar state [3]. The magnetic property is involved.
Theoretical studies on spinor BEC started by Ohmi and
Machida [4], Ho [5], Yip [6], Huang and Gou [7] etc. In sev-
eral earlier works, the conservation of magnetization was
not considered. Yi et al. [8] showed the ground state with-
out the constraint of conserved M will generally deviate
from the true ground state with the condition of M .

On the other hand, the statistical mechanical proper-
ties of spinor system were less explored than the MOT
type BEC. Isoshima et al. [9] found the double phase
transitions of ideal spinor Bose gas. They considered the
conservation of magnetization but the effect of finite par-
ticle number was not studied. Huang et al. studied an-
alytically the weakly interacting effect on the transition
temperature [10] under applied magnetic field, but the
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constraint of the magnetization M conservation was not
considered. Recently, Zhang et al. developed a Hartree-
Fock-Popov type approximation to study the behavior of
spinor BEC [11]. They pointed out that there may have
phase transitions more than just double phase transitions.
However, the effects of finite particle number are also left
over.

In this paper, we will focus on the statistical mechan-
ical properties of the F = 1 spinor BEC. This is appli-
cable to current spinor BEC systems of 87Rb and 23Na.
We will take both the constraints of finite particle num-
ber and magnetization into considerations. And derive the
corrections due to the finite particle number. At this mo-
ment, we present the results on ideal gas only. For the
interacting dilute Bose gas, we had studied the transition
temperature of the single component BEC [12]. We found
that near the transition temperature, both the conden-
sate and the thermal gas affect the statistical properties,
the effect of condensate part on the transition temper-
ature was not mentioned before [13]. Our results agree
with the experiment very well [14]. On the other hand,
the statistical mechanics of dilute spinor Bose gas with
interaction is quite complicated. And we found that the
analysis of statistical mechanics of the current spinor Bose
gas is still incomplete. Thus, in this paper, we provide a
detailed study for the transition temperatures of the ideal
spinor Bose gas based on the method mainly developed
by Pathria [15]. The basic thermodynamic properties, in-
cluding the double transition temperatures, the effect of
finite particle number on the transition temperature and
population of each component are investigated. The im-
plications of weakly interacting spinor Bose gas will be
presented in future work.
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The layout of this paper is as follows. In Section 2, the
basic formulation of the ideal F = 1 spinor Bose gas are
briefly stated. In Section 3, we analyze the phase transi-
tion as the temperature reaches the first transition tem-
perature. In Section 4, we analyze the behaviors before the
second phase transition. On reaching the second transition
temperature, we find that the numbers of thermal atoms
in each component are equal to each other. In Section 5,
we show the results of ideal spinor Bose gas of arbitrary F .
Finally, some concluding remarks are given in Section 6.

2 The distribution of the spinor Bose gas

Consider the system of hyperfine spin F = 1 and MF =
+1, 0,−1. The total number of atoms N is the sum over
the atoms in the three components

N = N+ + N0 + N−, (1)

and the net magnetization is

M = N+ − N−. (2)

M and N are constants and are two constraints of the sys-
tem. In current experiments, the range of N lies from hun-
dreds to millions. This number is not truly macroscopic
and can be called mesoscopic. As a consequence, the ther-
modynamic limit (N −→ ∞) has never been reached ex-
actly. Hence, strictly speaking, BEC of the trapped gases
is not a phase transition. In practice, the macroscopic oc-
cupation of the lowest state changes rather abruptly as
the temperature lowered and can be observed. Thus, the
terminology phase transition is generally used.

2.1 The grand potential

We introduce two Lagrange multipliers µ and η for the
constraints N and M . The grand potential [16] for the
general F = 1 spinor system is given by

Ω = E − TS − µN − ηM (3)

where

E =
∫

d3r

{
�

2

2m
|∇Φ|2 + V (r) |Φ|2

+
1
2
gn |Φ|4 +

1
2
gs

∣∣Φ†FΦ
∣∣2

}
. (4)

Here V (r) is the trapping potential. The coupling con-
stants gn and gs characterizing the density-density and
spin-spin interaction are given by gn = 4π�

2(a0+2a2)/3m
and gs = 4π�

2(a2 − a0)/3m. a0 and a2 are the corre-
sponding scattering lengths of two spin-1 atoms collides
into total spin-0, and spin-2 channel, respectively. Un-
like that of the single-component BEC, the order param-
eter Φ for this spinor system is vector-like whose com-
ponents are represented by three classical fields, Φ+,Φ0

and Φ−, corresponding to the condensates in the hyper-
fine states |F = 1, MF = +1, 0,−1〉, (designated as state
index α = +, 0,− ; hereafter), respectively. F is the angu-
lar momentum operator of F = 1. With the conventions
of equations (1) and (2), the normalization of each order
parameter is given by

∫
d3r |Φα|2 = 1. (5)

The trapping potential is generally described as V =
m(ω2

1x
2 + ω2

2y
2 + ω2

3z
2)/2. At thermal equilibrium, the

system is in the minimum of grand potential. Let nα,j be
the occupation number of atoms at an energy level εj of
the spinor component α. The ensemble averaged number
nα,j is then given by δΩ/δnα,j = 0, which yields the stan-
dard result [11]

nα,j =
zα exp(−εj/kBT )

1 − zα exp(−εj/kBT )
(6)

where zα = exp(µα/kBT ) is the fugacity. Mathematically
we can put η into the chemical potential, and define the
chemical potential for each spinor component as µ± =
µ ± η and µ0 = µ.

To calculate the thermodynamic quantities, we use the
grand canonical ensemble. This formulation corresponds
to an open system, not an isolated system. The numbers
N and M are ensemble averaged fixed. Only the grand
canonical ensemble has analytic formulation and the er-
ror is negligible. For N > 102, the error is smaller than
10% [17].

2.2 The effective energy spectra

In the following, we consider the case of ideal spinor Bose
gas. The scattering lengths a0 and a2 are set to zero. The
system becomes the noninteracting vector bosons in a har-
monic trap. We absorb the parameter η into the energy
level mathematically. Then the effective energy spectra
are ⎧⎨

⎩
ε+ = εide − η
ε0 = εide

ε− = εide + η
. (7)

With the 3-D harmonic trap, εide =
∑3

i=1(1/2+ni)�ωi are
the energy levels. For kBT � �ω, the number of thermal
atoms in each component α, is thus found to be

NT
α =

∑
{εj}

nα,j =
(

kBT

�ω

)3

g3(zα), (8)

where gν(x) =
∑∞

j=1(x
j/jν) is the Bose-Einstein function,

and ω = (ω1ω2ω3)1/3 is the geometrical mean of the trap
frequencies. Typical number of NT

α is O(104) ∼ O(107).
Notice the formula (Eq. (8)) is truncated to O(N1/3) and
is exact up to O(N1/2).
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3 The first phase transition

3.1 The thermodynamic limit

As the temperature drops down to certain ultracold re-
gion, the first phase transition will occur. Assume M > 0,
then η is positive to minimize Ω. (The case of M <
0 can be derived similarly.) Near transition tempera-
ture, µ → εc,ide

+ = εide
0 − η, where εide

0 = 3�ω̄/2 =
�(ω1 + ω2 + ω3)/2. We define the effective fugacity
ze = exp[(µ − εc,ide

+ )/kBT ] = z+ exp(−εide
0 /kBT ), where

z+ = exp[(µ+η)/kBT ]. Notice that when |+1〉 condensate
starts, we have ze → 1 instead of z+ → 1.

The following approximation will be useful in the fol-
lowing derivations for z → 1:

g3(az) =
∞∑

j=1

ajzj

j3
=

∞∑
j=1

aj(1 + z − 1)j

j3

�
∞∑

j=1

aj − j(1 − z)aj

j3

= g3(a) − (1 − z)g2(a). (9)

With exp(�ω̄/kBT ) → 1, apply previous formula, the Bose
distributions become

NT
+ =

(
kBT

�ω

)3

g3(ze) +
3ω̄

2ω

(
kBT

�ω

)2

g2(ze),

NT
0 =

(
kBT

�ω

)3

g3(zee
−βη) +

3ω̄

2ω

(
kBT

�ω

)2

g2(zee
−βη),

NT
− =

(
kBT

�ω

)3

g3(zee
−2βη) +

3ω̄

2ω

(
kBT

�ω

)2

g2(zee
−2βη),

(10)

where β = 1/kBT . We can see that N+ > N0 > N−.
When the first condensation occurs, we have ze → 1, then

NT
+ =

(
kBT

�ω

)3

[g3(1) − (1 − ze)g2(1)]

+
3ω̄

2ω

(
kBT

�ω

)2

g2(1),

NT
0 =

(
kBT

�ω

)3

[g3(e−βη) − (1 − ze)g2(e−βη)]

+
3ω̄

2ω

(
kBT

�ω

)2

g2(e−βη),

NT
− =

(
kBT

�ω

)3 [
g3(e−2βη) − (1 − ze)g2(e−2βη)

]

+
3ω̄

2ω

(
kBT

�ω

)2

g2(e−2βη). (11)

The first dominant term in each component is of O(N),
so we decide the thermodynamic limit transition temper-
ature T 0

1 and zη from the following two relationships for

given N and M :

N =
(

kBT 0
1

�ω

)3

[g3(1) + g3(zη) + g3(z2
η)],

M =
(

kBT 0
1

�ω

)3

[g3(1) − g3(z2
η)], (12)

where zη = e−βη. For convenience, we define

GF
ν (a) = gν(1) + gν(a) + gν(a2) + · · · + gν(a2F ), (13)

then the number of atoms in each component is

NT
+ =

g3(1)
G1

3(zη)
N,

NT
0 =

g3(zη)
G1

3(zη)
N,

NT
− =

g3(z2
η)

G1
3(zη)

N. (14)

The transition temperature is found as

T 0
1 =

�ω

kB

(
N

G1
3(zη)

)1/3

. (15)

The transition temperature also depends on M implicitly
through zη. If M = N then from equation (12), we have
zη → 0. It reduces to the ideal Bose gas of the usual one-
component case. As a special case for M = 0 in spinor
Bose gas, equation (12) gives zη = 1, or η = 0, then

N = 3ζ(3)
(

kBT 0
1

�ω

)3

,

where gν(1) = ζ(ν) is the Riemann’s Zeta function. The
transition temperature has the following simplified form

T 0
c =

�ω

kB

(
N

3ζ(3)

)1/3

� 0.652
�ω

kB
N1/3, (16)

where ζ(3) = 1.202.

3.2 The effect of finite particle number

Next, we discuss the correction to the previous first transi-
tion temperature of the spinor Bose gas in the thermody-
namic limit. We will treat the effect of finite particle num-
ber first. The second dominant terms in equation (11) are
in O(N2/3). It will be used to decide the finite-size effect
transition temperature T1. Follow Pathria [15], neglecting
(1 − ze) terms in equation (11), because they are in the
order of O(N1/2). At the moment of transition, the total
number of atoms is the sum of two leading order terms,
then

N =
(

kBT1

�ω

)3

G1
3(zη) +

3ω̄

2ω

(
kBT

�ω

)2

G1
2(zη). (17)
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Let T1 = T 0
1 (1 + ∆tfin

1 ), we obtain the fractional correc-
tion on transition temperature due to the effect of finite
particle number as

∆tfin
1 = − ω̄

2ω

(
�ω

kBT 0
1

)
G1

2(zη)
G1

3(zη)
. (18)

Specially for M = 0, we have

∆tfin
1 = − ω̄

2ω

(
�ω

kBT 0
1

)
ζ(2)
ζ(3)

= −1.049
ω̄

ω
N−1/3, (19)

where ζ(2) = 1.6449.

3.3 The populations of condensate states

In equation (11), the lowest order terms are in O(N1/2),
summing up to give the number of condensate atoms

N c =
(

kBT1

�ω

)3

G1
2(zη)(1 − ze), (20)

so we derive the number of condensate atom N c
+ from

N c
+ =

1
1 − ze

=
[
NG1

2(zη)
G1

3(zη)

]1/2

. (21)

And the numbers of atoms in the other two condensates
are

N c
0 =

1
1 − zezη

� kBT 0
1

η
,

N c
− =

1
1 − zez2

η

� kBT 0
1

2η
. (22)

These N c
0 and N c

− are in order of ∼ O(1) and are much
smaller than N c

+.

4 The second phase transition

4.1 The properties for temperature lies between
the two phase transitions

With η > 0, we have

NT
+ > NT

0 > NT
− ,

N c
+ > N c

0 > N c
−. (23)

As the temperature drops below the first transition tem-
perature T1, the numbers of thermal atoms are

NT
+ =

(
kBT

�ω

)3

g3(1) +
3ω̄

2ω

(
kBT

�ω

)2

g2(1),

NT
0 =

(
kBT

�ω

)3

g3(zη) +
3ω̄

2ω

(
kBT

�ω

)2

g2(zη),

NT
− =

(
kBT

�ω

)3

g3(z2
η) +

3ω̄

2ω

(
kBT

�ω

)2

g2(z2
η). (24)

The following properties can be justified.

Lemma a: NT
+ decreases monotonically as tempera-

ture drops.

It is straightforward from formula NT
+ in equation (24).

Lemma b: N c
+ increases monotonically as tempera-

ture drops.

From Lemma a, as temperature decreases, the number
of thermal atoms in component |+〉 will go to N c

+ or to
NT

0 , NT
− . The migration to N c

0 and N c
− is negligible due

to the relative small order. As NT
+ decreases and becomes

equal to NT
0 , NT

− has also increased, too. Since M = NT
+ +

N c
+ − NT− , to keep the conservation of M , N c

+ will keep
increasing as temperature drops.

Lemma c: zη increases monotonically as temperature
drops.

Let the total number of thermal atom be NT and the mag-
netization of thermal atoms be MT , from equation (16),
we have

MT

NT
=

M − N c
+

N − N c
+

=
g3(1) − g3(z2

η)
G1

3(zη)
. (25)

Because M and N are fixed and N c
+ is increasing as tem-

perature drops, so the ratio is decreasing. Since g3 and G1
3

are monotonic increasing functions, zη must be increasing
to satisfy the property.

Lemma d: The upper bound of zη is 1.

Since zη is increasing as T decreases, while zη > 1 implies
N− > N+. This contradicts our condition M > 0.

4.2 The thermodynamic limit

From the properties derived above, we know the upper
bound zη is 1. The second phase transition occurs around
zη ∼ 1. Expand equation (11) around zη = 1, we get

NT
+ =

(
kBT

�ω

)3

[g3(1) − (1 − ze)g2(1)]

+
3ω̄

2ω

(
kBT

�ω

)2

g2(1),

NT
0 =

(
kBT

�ω

)3

[g3(1) − (1 − zezη)g2(1)]

+
3ω̄

2ω

(
kBT

�ω

)2

g2(1),

NT
− =

(
kBT

�ω

)3

[g3(1) − (1 − zez
2
η)g2(1)]

+
3ω̄

2ω

(
kBT

�ω

)2

g2(1). (26)

The leading order terms in the above formulas are in O(N)
and are equal to each other for the three components. The
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second phase transition temperature T 0
2 in the thermody-

namic limit is defined from these terms

NT
+ = N0 = N− =

N − M

3
=

(
kBT 0

2

�ω

)3

g3(1).

Notice that at T 0
2 , all thermal atom numbers in the three

components are equal to each other, and the dominant
condensate atoms are in |+〉 state only. We have

M = N+ − N− = N c
+. (27)

So, the thermodynamic limit second transition tempera-
ture is

T 0
2 =

�ω

kB

[
N − M

3g3(1)

]1/3

= 0.652
�ω

kB
(N − M)1/3. (28)

4.3 The effect of finite particle number

From the Bose distribution, we obtain the number of con-
densate atoms in each component

N c
+ =

1
1 − ze

= M,

N c
0 =

1
1 − zezη

,

N c
− =

1
1 − zez2

η

. (29)

The first term in equation (26) is of O(N), the second
term is of O(N2/3) in all components. Near the second
transition temperature, the numbers of condensate atoms
can be neglected. We decide the second transition tem-
perature T2 of finite particle number by the two leading
terms in equation (26)

N − M

3
=

(
kBT2

�ω

)3

g3(1) +
3ω̄

2ω

(
kBT2

�ω

)2

g2(1). (30)

Let T2 = T 0
2 (1+∆tfin

2 ), then the fractional modification of
transition temperature due to the finite particle number is

∆tfin
2 = − ω̄

2ω

(
�ω

kBT 0
2

)
g2(1)
g3(1)

= −1.049
ω̄

ω
(N − M)−1/3.

(31)

4.4 The number of condensate atoms in each
component

The condensation number N c
+ is

N c
+ = M =

1
1 − z+

=
1

1 − eβ(µ−εc
+)

� kBT 0
2

ε0 − η − µ
(32)

or
µ = εide

0 − η − kBT

M
. (33)

For the other two condensate numbers,

N c
0 =

1
1 − eβ(µ−εc

0)
=

kBT2

η + kBT
M

� kBT2

η
= O(N1/2),

(34)
where η/(�ω) = O(N−1/6) and η/(kBT2) = O(N−1/2) �
1/M = O(N−1), and 1/M can then be neglected; so

N c
− =

kBT2

2η
. (35)

Combine the expressions of N c
0 and N c

− with that from
equation (26)

N c
0 + N c

− =
(

kBT

�ω

)3

g2(1)[(1 − z0) + (1 − z−)], (36)

we obtain

3kBT2

2η
=

N − M

3
g2(1)
g3(1)

[
3η

kBT2

]
. (37)

Finally, we obtain condensate number of components |0〉
and |−〉 as

N c
0 =

kBT2

η
=

(
2(N − M)g2(1)

3g3(1)

)1/2

= 0.955(N − M)1/2,

N c
− =

kBT2

2η
=

(
(N − M)g2(1)

6g3(1)

)1/2

= 0.478(N − M)1/2. (38)

For temperature below T2, the condensate number of com-
ponent |α〉 and the total number of condensate atoms
satisfy

N c =
∑
α

N c
α = (N − M)

[
1 −

(
T

T2

)3
]

+ M, (39a)

M =
∑
α

αN c
α = N c

+ − N c
−, (39b)

1
N c−

=
2

N c
0

− 1
N c

+

. (39c)

5 Arbitrary F ideal spinor Bose gas

5.1 The first phase transition

Following the previous analysis, we can easily derive the
first phase transition of arbitrary F ideal spinor Bose gas:

N =
(

kBT 0
1

�ω

)3

GF
3 (zη),

M =
(

kBT 0
1

�ω

)3 2F∑
i=0

(F − i)g3(zi
η). (40)



268 The European Physical Journal D

The thermodynamic limit first transition temperature is

T 0
1 =

�ω

kB

(
N

GF
3 (zη)

)1/3

, (41)

and the shift of transition temperature due to finite par-
ticle number is

∆tfin
1 = − ω̄

2ω

(
�ω

kBT 0
1

)
GF

2 (zη)
GF

3 (zη)

= − ω̄

2ω

GF
2 (zη)

[GF
3 (zη)]2/3

N−1/3, (42)

and the condensate population of |F, mF = F 〉 is

N c
F =

[
NGF

2 (zη)
GF

3 (zη)

]1/2

. (43)

5.2 The second phase transition

For arbitrary F ideal spinor Bose gas, there are two and
only two phase transition. The thermodynamic limit sec-
ond transition temperature is

T 0
2 =

�ω

kB

[
N − M

(2F + 1)g3(1)

]1/3

= 0.940
�ω

kB

[
N − M

(2F + 1)

]1/3

.

(44)
The shift of transition temperature due to finite particle
number is

∆tfin
2 = − ω̄

2ω

(
�ω

kBT 0
2

)
g2(1)
g3(1)

= −0.728
ω̄

ω

(
2F + 1
N − M

)1/3

.

(45)
Define the average of the harmonic sequences from 1
to 2F as

H̄2F ≡ 1
2F

2F∑
n=1

1
n

, (46)

we obtain
kBT 0

2

η
=

[
(N − M)

2H̄2F

]1/2

. (47)

The condensate population of |F, mF = +F 〉 is equal
to M . For the other components |F, mF = α〉

N c
α =

1
F − α

(
(N − M)

2H̄2F

)1/2

,

(α = −F,−F + 1, · · · , F − 1). (48)

For temperature below T2, the condensate population of
component |α〉 and the total number of condensate atoms
satisfy

N c =
∑
α

N c
α = (N − M)

[
1 −

(
T

T2

)3
]

+ M (49a)

M =
∑
α

αN c
α, (49b)

1
N c

α

=
F − α

N c
F−1

+
1 − (F − α)

N c
F

. (49c)

6 Discussion

1. We analyzed the thermodynamic properties of the
trapped ideal spinor Bose gas. Without loss of physics, we
discussed the case of M > 0 (the case of M < 0 can be
derived in the same way). As temperature drops to T1, the
condensate atoms start to appear in the highest MF spinor
component. As the temperature keeps dropping to T2, the
numbers of thermal atoms in each spinor component be-
come equal to each other and the condensate atoms in the
other spinor components start to appear. Thus, there are
two phase transitions only.

2. Our calculation is exact up to O(N1/2). Typi-
cally, if NT

α in each component is larger than 103, then
kBT/(�ω) > 10, the approximation of equation (9) is re-
liable throughout our analysis.

3. Under a weak applied magnetic field B along z-
direction, the Larmor frequency is ωL = γµB, where γµ

is the gyromagnetic ratio. The energy shift to each com-
ponent is −MF �ωL = −MF ηext. Combine the shift due
to the applied magnetic field together with the Lagrange
multiplier η, we have the effective magnetic field,

ηeff = η + ηext. (50)

There will be no change in our analysis with η being
replaced by ηeff . The parameter ηeff plays the role of
an effective magnetic field, As temperature drops to T2,
ηeff → 0. The effective magnetic field disappears there-
after.

4. In this system, we have two conservation condi-
tions and have two Lagrange multipliers. Whenever there
is a discontinuity in the temperature derivative of the
Lagrange multiplier, there is a phase transition.

5. The two phases on either side of the critical tem-
perature have different symmetries and must be described
by different functions [21]. Landau proposed the order pa-
rameter to describe the low-temperature phase, which is
usually an extensive thermodynamic variable accessible
to measurements. In the spinor BEC system, near the
first transition temperature T1, we can derive 1/N c

+ ∼
−β(µ+ − εide

0 ) from equation (21). Thus, for temperature
lies above T1, we can use β(µ+ − εide

0 ) to describe the
incoherence of the system. We may call it the disorder pa-
rameter. As temperature decreases to the phase transition,
the disorder parameter disappears and there is symmetry
broken. The corresponding order parameter shows up. The
condensate fraction fα is commonly used for the measur-
able quantity. Similar picture can be applied to the be-
haviors near the second phase transition temperature T2.
We plot in Figure 1 the order and disorder parameters as
function of temperature near the phase transitions for the
case of N = 105 and M = 6×104. Furthermore, Figure 2a
shows details near the first phase transition. Due to the
finite-size effect and trap potential, the phase transition
temperature T1 shifts downward to the thermodynamic T 0

1
and the curve of order and disorder parameter henceforth
has a separation at T1. Figure 2b plots similar behaviors
of the second phase transition in more details, too.

6. The Double phase transition phenomena base on
exact ideal spinor Bose gas. In the interacting spinor Bose
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Fig. 1. The order parameter and disorder parameter of the
spinor BEC system. The two kinds of parameters describe the
two phases on each side of the critical temperature. fα denotes
the condensate fraction of spinor state |α〉.
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Fig. 2. (a) The detailed behaviors of order and disorder param-
eters near the first transition temperature T1; (b) the behaviors
near the second phase transition temperature T2.

gas, there are 2F ’s parameters to describe the behaviors
of the phase transition. The phase transitions can be more
than two. A systematic discussion of the thermodynamic
properties of the weakly interacting trapped spinor F = 1
Bose gas, will be the subject of a future work.
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